Search results for " radiation hardness."

showing 3 items of 3 documents

Threshold Voltage Variability of NROM Memories After Exposure to Ionizing Radiation

2012

Threshold voltage (V-th) behavior of nitride readonly memories (NROMs) was studied after irradiation with photons (gamma-and X-rays), light and heavy ions. Both programmed and nonprogrammed single cells were investigated. The data suggest that two main physical phenomena are contributing to V-th variation and that the V-th loss and the variability can be modeled by a Weibull statistics with a shape parameter k similar to 2.2 regardless of the irradiation species and total dose. The same peculiarities were found in large memory arrays, confirming the results from single-cell studies but with significantly larger statistics. Hence, once the irradiation dose is known, the V-th loss distributio…

Materials sciencePhotonbusiness.industryoxide-nitride-oxide (ONO)radiation hardnessFlash memoriesShape parameterElectronic Optical and Magnetic MaterialsThreshold voltageIonizing radiationNon-volatile memoryFlash memories nitride read-only memories (NROMs) oxide–nitride–oxide (ONO) radiation hardness.nitride read-only memories (NROMs)OptoelectronicsIrradiationElectrical and Electronic EngineeringbusinessRadiation hardeningWeibull distribution
researchProduct

Ionizing radiation effects on Non Volatile Read Only Memory cells

2012

Threshold voltage (V-th) and drain-source current (I-DS) behaviour of nitride read only memories (NROM) were studied both in situ during irradiation or after irradiation with photons and ions. V-th loss fluctuations are well explained by the same Weibull statistics regardless of the irradiation species and total dose. Results of drain current measurements in-situ during irradiation with photons and ions reveal a step-like increase of I-DS with the total irradiation dose. A brief physical explanation is also provided.

Nuclear and High Energy PhysicsPhotonMaterials sciencebusiness.industrynitride read-only memories (NROM)Nitrideradiation hardnessFlash memoriesFlash memoryIonizing radiationThreshold voltageIonoxide/nitride/oxide (ONO)Terms—Flash memories nitride read-only memories (NROM) oxide/nitride/oxide (ONO) radiation hardness.Nuclear Energy and EngineeringOptoelectronicsIrradiationElectrical and Electronic EngineeringbusinessRadiation hardening
researchProduct

Radiation-hard semiconductor detectors for SuperLHC

2005

An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10^35 cm^(- 2) s(- 1) has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016 cm 2. The CERN-RD50 project ''Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders'' has been established in 2002 to explore…

Nuclear and High Energy Physicsradiation hard semiconductorsPhysics::Instrumentation and DetectorsSemiconductor detectorsRadiation Detector; LHCradiation hardness01 natural sciencesDefect engineeringSuper-LHCRadiation damageradiation detectorssilicon detectors0103 physical sciencesRadiation damageSuperLHCSilicon detectors; LHC; RD50 collaboration; radiation hardnessInstrumentationRadiation hardeningRadiation hardness010302 applied physicsPhysicsRadiation damage; Semiconductor detectors; Silicon particle detectors; Defect engineering; SLHC; Super-LHCLuminosity (scattering theory)Large Hadron ColliderRadiation DetectorInteraction pointRD50 collaboration010308 nuclear & particles physicsbusiness.industrySLHCDetectorRadiation hardness; silicon detectorsSemiconductor deviceSemiconductor detectorSilicon particle detectorsOptoelectronicsSilicon detectorsHigh Energy Physics::ExperimentLHCbusiness
researchProduct